3.7 \(\int \frac {(e x)^m (A+B x^n) (c+d x^n)}{(a+b x^n)^3} \, dx\)

Optimal. Leaf size=228 \[ -\frac {(e x)^{m+1} \, _2F_1\left (1,\frac {m+1}{n};\frac {m+n+1}{n};-\frac {b x^n}{a}\right ) (b c (m-n+1) (a B (m+1)-A b (m-2 n+1))+a d (m+1) (A b (m-n+1)-a B (m+n+1)))}{2 a^3 b^2 e (m+1) n^2}-\frac {(e x)^{m+1} (A b (b c (m-2 n+1)-a d (m-n+1))-a B (b c (m+1)-a d (m+n+1)))}{2 a^2 b^2 e n^2 \left (a+b x^n\right )}+\frac {(e x)^{m+1} (A b-a B) \left (c+d x^n\right )}{2 a b e n \left (a+b x^n\right )^2} \]

[Out]

-1/2*(A*b*(b*c*(1+m-2*n)-a*d*(1+m-n))-a*B*(b*c*(1+m)-a*d*(1+m+n)))*(e*x)^(1+m)/a^2/b^2/e/n^2/(a+b*x^n)+1/2*(A*
b-B*a)*(e*x)^(1+m)*(c+d*x^n)/a/b/e/n/(a+b*x^n)^2-1/2*(b*c*(a*B*(1+m)-A*b*(1+m-2*n))*(1+m-n)+a*d*(1+m)*(A*b*(1+
m-n)-a*B*(1+m+n)))*(e*x)^(1+m)*hypergeom([1, (1+m)/n],[(1+m+n)/n],-b*x^n/a)/a^3/b^2/e/(1+m)/n^2

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 228, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {594, 457, 364} \[ -\frac {(e x)^{m+1} \, _2F_1\left (1,\frac {m+1}{n};\frac {m+n+1}{n};-\frac {b x^n}{a}\right ) (b c (m-n+1) (a B (m+1)-A b (m-2 n+1))+a d (m+1) (A b (m-n+1)-a B (m+n+1)))}{2 a^3 b^2 e (m+1) n^2}-\frac {(e x)^{m+1} (A b (b c (m-2 n+1)-a d (m-n+1))-a B (b c (m+1)-a d (m+n+1)))}{2 a^2 b^2 e n^2 \left (a+b x^n\right )}+\frac {(e x)^{m+1} (A b-a B) \left (c+d x^n\right )}{2 a b e n \left (a+b x^n\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n)^3,x]

[Out]

-((A*b*(b*c*(1 + m - 2*n) - a*d*(1 + m - n)) - a*B*(b*c*(1 + m) - a*d*(1 + m + n)))*(e*x)^(1 + m))/(2*a^2*b^2*
e*n^2*(a + b*x^n)) + ((A*b - a*B)*(e*x)^(1 + m)*(c + d*x^n))/(2*a*b*e*n*(a + b*x^n)^2) - ((b*c*(a*B*(1 + m) -
A*b*(1 + m - 2*n))*(1 + m - n) + a*d*(1 + m)*(A*b*(1 + m - n) - a*B*(1 + m + n)))*(e*x)^(1 + m)*Hypergeometric
2F1[1, (1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)])/(2*a^3*b^2*e*(1 + m)*n^2)

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 594

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> -Simp[((b*e - a*f)*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*g*n*(p + 1)), x] + Dist[
1/(a*b*n*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*(m
+ 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x]
 && LtQ[p, -1] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])

Rubi steps

\begin {align*} \int \frac {(e x)^m \left (A+B x^n\right ) \left (c+d x^n\right )}{\left (a+b x^n\right )^3} \, dx &=\frac {(A b-a B) (e x)^{1+m} \left (c+d x^n\right )}{2 a b e n \left (a+b x^n\right )^2}-\frac {\int \frac {(e x)^m \left (-c (a B (1+m)-A b (1+m-2 n))+d (A b (1+m-n)-a B (1+m+n)) x^n\right )}{\left (a+b x^n\right )^2} \, dx}{2 a b n}\\ &=-\frac {(A b (b c (1+m-2 n)-a d (1+m-n))-a B (b c (1+m)-a d (1+m+n))) (e x)^{1+m}}{2 a^2 b^2 e n^2 \left (a+b x^n\right )}+\frac {(A b-a B) (e x)^{1+m} \left (c+d x^n\right )}{2 a b e n \left (a+b x^n\right )^2}-\frac {(b c (a B (1+m)-A b (1+m-2 n)) (1+m-n)+a d (1+m) (A b (1+m-n)-a B (1+m+n))) \int \frac {(e x)^m}{a+b x^n} \, dx}{2 a^2 b^2 n^2}\\ &=-\frac {(A b (b c (1+m-2 n)-a d (1+m-n))-a B (b c (1+m)-a d (1+m+n))) (e x)^{1+m}}{2 a^2 b^2 e n^2 \left (a+b x^n\right )}+\frac {(A b-a B) (e x)^{1+m} \left (c+d x^n\right )}{2 a b e n \left (a+b x^n\right )^2}-\frac {(b c (a B (1+m)-A b (1+m-2 n)) (1+m-n)+a d (1+m) (A b (1+m-n)-a B (1+m+n))) (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{n};\frac {1+m+n}{n};-\frac {b x^n}{a}\right )}{2 a^3 b^2 e (1+m) n^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 136, normalized size = 0.60 \[ \frac {x (e x)^m \left (a^2 B d \, _2F_1\left (1,\frac {m+1}{n};\frac {m+n+1}{n};-\frac {b x^n}{a}\right )+a (-2 a B d+A b d+b B c) \, _2F_1\left (2,\frac {m+1}{n};\frac {m+n+1}{n};-\frac {b x^n}{a}\right )+(A b-a B) (b c-a d) \, _2F_1\left (3,\frac {m+1}{n};\frac {m+n+1}{n};-\frac {b x^n}{a}\right )\right )}{a^3 b^2 (m+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n)^3,x]

[Out]

(x*(e*x)^m*(a^2*B*d*Hypergeometric2F1[1, (1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)] + a*(b*B*c + A*b*d - 2*a*B*d)
*Hypergeometric2F1[2, (1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)] + (A*b - a*B)*(b*c - a*d)*Hypergeometric2F1[3, (
1 + m)/n, (1 + m + n)/n, -((b*x^n)/a)]))/(a^3*b^2*(1 + m))

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (B d x^{2 \, n} + A c + {\left (B c + A d\right )} x^{n}\right )} \left (e x\right )^{m}}{b^{3} x^{3 \, n} + 3 \, a b^{2} x^{2 \, n} + 3 \, a^{2} b x^{n} + a^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n)^3,x, algorithm="fricas")

[Out]

integral((B*d*x^(2*n) + A*c + (B*c + A*d)*x^n)*(e*x)^m/(b^3*x^(3*n) + 3*a*b^2*x^(2*n) + 3*a^2*b*x^n + a^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B x^{n} + A\right )} {\left (d x^{n} + c\right )} \left (e x\right )^{m}}{{\left (b x^{n} + a\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n)^3,x, algorithm="giac")

[Out]

integrate((B*x^n + A)*(d*x^n + c)*(e*x)^m/(b*x^n + a)^3, x)

________________________________________________________________________________________

maple [F]  time = 0.66, size = 0, normalized size = 0.00 \[ \int \frac {\left (B \,x^{n}+A \right ) \left (d \,x^{n}+c \right ) \left (e x \right )^{m}}{\left (b \,x^{n}+a \right )^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(B*x^n+A)*(d*x^n+c)/(b*x^n+a)^3,x)

[Out]

int((e*x)^m*(B*x^n+A)*(d*x^n+c)/(b*x^n+a)^3,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ {\left ({\left ({\left (m^{2} - m {\left (3 \, n - 2\right )} + 2 \, n^{2} - 3 \, n + 1\right )} b^{2} c e^{m} - {\left (m^{2} - m {\left (n - 2\right )} - n + 1\right )} a b d e^{m}\right )} A - {\left ({\left (m^{2} - m {\left (n - 2\right )} - n + 1\right )} a b c e^{m} - {\left (m^{2} + m {\left (n + 2\right )} + n + 1\right )} a^{2} d e^{m}\right )} B\right )} \int \frac {x^{m}}{2 \, {\left (a^{2} b^{3} n^{2} x^{n} + a^{3} b^{2} n^{2}\right )}}\,{d x} + \frac {{\left ({\left (a^{2} b d e^{m} {\left (m - n + 1\right )} - a b^{2} c e^{m} {\left (m - 3 \, n + 1\right )}\right )} A - {\left (a^{3} d e^{m} {\left (m + n + 1\right )} - a^{2} b c e^{m} {\left (m - n + 1\right )}\right )} B\right )} x x^{m} - {\left ({\left (b^{3} c e^{m} {\left (m - 2 \, n + 1\right )} - a b^{2} d e^{m} {\left (m + 1\right )}\right )} A + {\left (a^{2} b d e^{m} {\left (m + 2 \, n + 1\right )} - a b^{2} c e^{m} {\left (m + 1\right )}\right )} B\right )} x e^{\left (m \log \relax (x) + n \log \relax (x)\right )}}{2 \, {\left (a^{2} b^{4} n^{2} x^{2 \, n} + 2 \, a^{3} b^{3} n^{2} x^{n} + a^{4} b^{2} n^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(A+B*x^n)*(c+d*x^n)/(a+b*x^n)^3,x, algorithm="maxima")

[Out]

(((m^2 - m*(3*n - 2) + 2*n^2 - 3*n + 1)*b^2*c*e^m - (m^2 - m*(n - 2) - n + 1)*a*b*d*e^m)*A - ((m^2 - m*(n - 2)
 - n + 1)*a*b*c*e^m - (m^2 + m*(n + 2) + n + 1)*a^2*d*e^m)*B)*integrate(1/2*x^m/(a^2*b^3*n^2*x^n + a^3*b^2*n^2
), x) + 1/2*(((a^2*b*d*e^m*(m - n + 1) - a*b^2*c*e^m*(m - 3*n + 1))*A - (a^3*d*e^m*(m + n + 1) - a^2*b*c*e^m*(
m - n + 1))*B)*x*x^m - ((b^3*c*e^m*(m - 2*n + 1) - a*b^2*d*e^m*(m + 1))*A + (a^2*b*d*e^m*(m + 2*n + 1) - a*b^2
*c*e^m*(m + 1))*B)*x*e^(m*log(x) + n*log(x)))/(a^2*b^4*n^2*x^(2*n) + 2*a^3*b^3*n^2*x^n + a^4*b^2*n^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (e\,x\right )}^m\,\left (A+B\,x^n\right )\,\left (c+d\,x^n\right )}{{\left (a+b\,x^n\right )}^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n)^3,x)

[Out]

int(((e*x)^m*(A + B*x^n)*(c + d*x^n))/(a + b*x^n)^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(A+B*x**n)*(c+d*x**n)/(a+b*x**n)**3,x)

[Out]

Timed out

________________________________________________________________________________________